secp256k1
import collections import random EllipticCurve = collections.namedtuple('EllipticCurve', 'name p a b g n h') curve = EllipticCurve( 'secp256k1', p=int(input('p=')), a=int(input('a=')), b=int(input('b=')), g=(int(input('g.x=')), int(input('g.y='))), n=int(input('k=')), h=1, ) def inverse_mod(k, p): if k == 0: raise ZeroDivisionError('division by zero') if k < 0: return p - inverse_mod(-k, p) s, old_s = 0, 1 t, old_t = 1, 0 r, old_r = p, k while r != 0: quotient = old_r // r old_r, r = r, old_r - quotient * r old_s, s = s, old_s - quotient * s old_t, t = t, old_t - quotient * t gcd, x, y = old_r, old_s, old_t assert gcd == 1 assert (k * x) % p == 1 return x % p def is_on_curve(point): if point is None: return True x, y = point return (y * y - x * x * x - curve.a * x - curve.b) % curve.p == 0 def point_neg(point): assert is_on_curve(point) if point is None: return None x, y = point result = (x, -y % curve.p) assert is_on_curve(result) return result def point_add(point1, point2): assert is_on_curve(point1) assert is_on_curve(point2) if point1 is None: return point2 if point2 is None: return point1 x1, y1 = point1 x2, y2 = point2 if x1 == x2 and y1 != y2: return None if x1 == x2: m = (3 * x1 * x1 + curve.a) * inverse_mod(2 * y1, curve.p) else: m = (y1 - y2) * inverse_mod(x1 - x2, curve.p) x3 = m * m - x1 - x2 y3 = y1 + m * (x3 - x1) result = (x3 % curve.p, -y3 % curve.p) assert is_on_curve(result) return result def scalar_mult(k, point): assert is_on_curve(point) if k < 0: return scalar_mult(-k, point_neg(point)) result = None addend = point while k: if k & 1: result = point_add(result, addend) addend = point_add(addend, addend) k >>= 1 assert is_on_curve(result) return result def make_keypair(): private_key = curve.n public_key = scalar_mult(private_key, curve.g) return private_key, public_key print('Curve:', curve.name) private_key, public_key = make_keypair() print("private key:", hex(private_key)) print("public key: (0x{:x}, 0x{:x})".format(*public_key))